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Recognition of decomposable posets by using the poset matrix
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Abstract. We introduce the notion of a composition of square matrices. We recall
the notion of poset matrix, a square (0, 1)-matrix, to represent posets. We show that
this composition of poset matrices gives generalizations of the ordinal product as well
as the direct sum and ordinal sum of poset matrices. We give an interpretation of
the composition of poset matrices in posets. We show that the composition of poset
matrices is also a poset matrix, and it represents a decomposable poset. This result
gives, consequently, a matrix recognition of the decomposable posets.
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1. Introduction

To maximize efficiency, methods for solving many optimization problems on the
structure theory begin with some decomposition techniques. These techniques
are used to reduce a bigger structure into smaller ones of the same kind, like
posets into autonomous sets [3], graphs into clumps [1], comparability graphs
into stable sets [10], schedules into job-modules [4], and networks into simplifi-
able subnetworks [9]. As a result, due to the computational tractability property
of the decomposable posets, various methods for the recognition of this type of
posets are considered by numerous authors. Khamis [3] recalled the notion of
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composition of posets and described an algorithmic method for the recognition
of prime (indecomposable) posets. In this article, we give a matrix recogni-
tion of the decomposable posets by using the poset matrix, an incidence matrix
introduced by Mohammad and Talukder [6] to represent posets.

Since the incidence matrices have many computational aspects, these are
chosen repeatedly in recognizing different classes of posets [6, 11] and graphs [5,
12]. As a result, special operations on incidence matrices, due to the classical
applications in the adjacent fields, are considered in the literature [5, 7, 8]. In
this paper, we introduce the notion of a composition of square matrices and give
an interpretation of this composition of poset matrices in posets. Tucker [12]
recognized the circular-arc graphs and proper circular-arc graphs by using the
properties of perfect 0s, circular 1s, and circularly compatible 1s defined on an
augmented adjacency matrix. These results give us the idea of defining the
property of transitive blocks of 1s on a block poset matrix and giving a matrix
recognition of the decomposable posets.

In Section 2, we recall some basic terminologies related to the ordinal prod-
uct and composition of posets. We also recall the common operations in the
poset matrices and their interpretations in posets. In Section 3, we define the
aforesaid composition of square matrices. Here, we mainly show that the compo-
sition of poset matrices is also a poset matrix, and it represents a decomposable
poset. We also show that this composition of poset matrices generalizes the
ordinal product of poset matrices, and every composite poset is decomposable.
In Section 4, we define the property of transitive blocks of 1s in a block poset
matrix and give a matrix recognition of the decomposable posets.

2. Preliminaries

A poset (partially ordered set) is a structure A = ⟨A,⩽⟩ consisting of the
nonempty set A with the order relation ⩽ on A, that is, the relation ⩽ is
reflexive, antisymmetric, and transitive on A. A poset A is called finite if the
underlying set A is finite. Here, we assume that every poset is finite. Let
A = ⟨A,⩽A⟩ and B = ⟨B,⩽B⟩ be two posets. A bijective map ϕ : A → B is
called an order isomorphism if for all x, y ∈ A, we have x ⩽A y if and only if
ϕ(x) ⩽B ϕ(y). We write A ∼= B whenever A and B are order isomorphic. For
further essentials of posets, readers are referred to the classical book by Davey
and Priestley [2].

We use the notation 1 for the singleton poset, Cn(n ≥ 1) for the n-element
chain posets, In(n ≥ 1) for the n-element antichain posets, Dn(n ≥ 4) for
the n-element diamond posets, Zn(n ≥ 4) for the n-element zigzag posets, and
Bm,n(m ≥ 1, n ≥ 1) for the complete bipartite posets with m minimal elements
and n maximal elements.

We also use the notation A + B and A ⊕ B to denote the direct sum and
ordinal sum, respectively, of the posets A and B. For any poset A, we write
shortly nA for A+A+ · · ·+A and ⊕nA for A⊕A⊕ · · · ⊕A. In general, for
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any posets Bi, 1 ≤ i ≤ n, we write shortly
∑n

i=1Bi for B1 +B2 + · · ·+Bn and⊕n
i=1Bi for B1 ⊕B2 ⊕ · · · ⊕Bn.

A poset G is called a P -graph if there exist the singleton or antichain posets
Ai, 1 ≤ i ≤ n such that G ∼=

⊕n
i=1Ai. A poset S is called a P -series if there

exist the P -graphs Gi, 1 ≤ i ≤ n such that S ∼=
∑n

i=1Gi. Every P -graph is
trivially a P -series. A poset is called series-parallel if it can be expressed as the
sum of the singleton posets using only the direct sum and ordinal sum. Every
P -series, as well as every P -graph, is trivially series-parallel.

The ordinal product of the posets A and B, denoted by A ⊗ B, is defined
as the poset ⟨A × B,⩽⊗⟩ such that for all (x, y), (x

′
, y

′
) ∈ A × B, we have

(x, y) ⩽⊗ (x
′
, y

′
) if either (i) x ⩽A x

′
or (ii) x = x

′
and y ⩽B y

′
. Here, the

posets A and B are called the ordinal factors of A⊗B. In Figure 1, the ordinal
product B1,2 ⊗B2,1 along with the direct sum B1,2 +B2,1 and the ordinal sum
B1,2⊕B2,1 are shown by using the Hasse diagrams. In general, A⊗B ≇ B⊗A.

B1,2 +B2,1 B1,2 ⊕B2,1 B1,2 ⊗B2,1

Figure 1: Hasse diagrams of B1,2 +B2,1, B1,2 ⊕B2,1, and B1,2 ⊗B2,1.

A poset C is said to be composite if and only if their exist nonsingleton
posets A and B such that C ∼= A ⊗ B. For example, the poset B1,2 ⊗ B2,1

(Figure 1) is composite. Also, for any poset B, the poset nB and ⊕nB are
composite, because nB ∼= In ⊗ B and ⊕nB ∼= Cn ⊗ B. A proof by using the
poset matrix of the result relating the ordinal sum was given by Mohammad
and Talukder [7].

We now recall the definition of the composition of posets. Let A = ⟨A,⩽A⟩
with A = {x1, x2, ..., xm} and Br = ⟨Br,⩽Br⟩, 1 ≤ r ≤ m with Br = {yt+i :
1 ≤ i ≤ nr} where t =

∑r−1
k=1 nk, be posets on the disjoint sets A and Br,

1 ≤ r ≤ m. Then the composition of the posets A and Br, 1 ≤ r ≤ m, denoted
by A [B1, B2, ..., Bm], is defined as the poset ⟨

⋃m
k=1Bk,⩽c⟩ such that for all

yi, yj ∈
⋃m

r=1Br, we have yi ⩽c yj if and only if one of the following conditions
is satisfied.

1. yt+i′ , yl+j′ ∈ Br for some r (when t = l =
∑r−1

k=1 nk, i
′
= i−t and j

′
= j−l)

and yt+i
′ ⩽Br yl+j

′ ,

2. yt+i′ ∈ Br and yl+j′ ∈ Bs for some r < s (when
∑r−1

k=1 nk = t < l =∑s−1
k=1 nk, i

′
= i− t and j

′
= j − l) and xr ⩽A xs.
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Here, A is called the outer poset or quotient poset, and Br, 1 ≤ r ≤ m are called
the inner posets and their ground sets are called autonomous sets. An example
of the composition of posets is shown in Figure 2 by using the Hasse diagrams.
Obviously, for any posets Bi, 1 ≤ i ≤ n, we have

∑n
i=1Bi

∼= In[B1,B2, ...,Bn]
and

⊕n
i=1Bi

∼= Cn[B1,B2, ...,Bn]. In particular, for any poset A with |A| = n,
we have A ∼= A[1,1, ...,1︸ ︷︷ ︸

n times

].

B2,1 C2

,
Z4

,
B1,2

=

B2,1[C2,Z4,B1,2]

Figure 2: Hasse diagrams giving the composition B2,1[C2,Z4,B1,2].

A poset D is called decomposable if and only if D is isomorphic to some
posets obtained as the composition of two or more inner posets where at least
one inner poset is nonsingleton. Thus, a poset D is decomposable if and only
if there exist the poset A and the posets B1,B2, ...,Bn, n ≥ 2, where at least
one Bi is nonsingleton, such that D ∼= A[B1,B2, ...,Bn]. For example, the
posets D4 and Z4⊕1 are decomposable because D4

∼= C2[1,B2,1] ∼= C2[B1,2,1]
∼= C3[1, I2,1] and Z4⊕1 ∼= C2[Z4,1]. Here, we see that the posets 1, I2, and C2

are not decomposable. We assume that these posets are trivially decomposable.
On the other hand, a poset is called prime or indecomposable if and only if it
is not decomposable. For example, the poset Z4 is a prime poset with the least
number of elements.

Note that for any nontrivial P -graph G, we have G ∼= Cn[Im1 , Im2 , ..., Imn ]
for some mi, 1 ≤ i ≤ n. Also, for any nontrivial P -series S, we have S ∼=
In[G1,G2, ...,Gn] for some P -graphs Gi, 1 ≤ i ≤ n. These show that every
P -series as well as every P -graph is decomposable. Similarly, we can show that
every series-parallel poset is decomposable. Note also that, since Z4 is not a
P -graph, Z4 ⊕ 1 is not series-parallel. Thus, a decomposable poset may not
be series-parallel. However, we will show by using the poset matrix that every
composite poset is decomposable (Corollary 3.2).

Mohammad and Talukder [6] introduced the notion of poset matrix, where
they gave matrix recognitions of some subclasses of series-parallel posets. A
square (0, 1)-matrix M = [aij ], 1 ≤ i, j ≤ m is called a poset matrix if and only
if the following conditions hold.

1. aii = 1 for all 1 ≤ i ≤ m i.e. M is reflexive,

2. aij = 1 and aji = 1 imply i = j i.e. M is antisymmetric,
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3. aij = 1 and ajk = 1 imply aik = 1 i.e. M is transitive.

Both the matrices M and M ′ in the following example are poset matrices

Example 2.1.

M =

 1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 , M
′
=

 1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1


Throughout this paper, we use the notation Mm,n for an m-by-n matrix and

Mm for a square matrix of order m. In particular, we use the notation In, On,
and Zn for the n-th order identity matrix, the matrix with all entries 1s, and
the matrix with all entries 0s, respectively. We also use the notation Cn for the
matrix [cij ], 1 ≤ i, j ≤ n defined as cij = 1 for all i ≤ j and cij = 0 otherwise.
For every n ≥ 1, both the matrices In and Cn are trivially poset matrices.

To each poset matrix Mm = [aij ], 1 ≤ i, j ≤ m, a poset A = ⟨A,⩽⟩, where
A = {x1, x2, . . . , xm} and xi corresponds the i-th row (or column) of Mm, is
associated by defining the order relation ⩽ on A such that for all 1 ≤ i, j ≤ m,
we have xi ⩽ xj if and only if aij = 1. Then it is said that the poset matrix
Mm represents the poset A and vice versa. For example, the poset matrix In
represents the poset In and the poset matrix Cn represents the poset Cn. Also,
the poset matrices M and M

′
, as given in Example 2.1, represent the posets D4

and Z4, respectively.

Let Mm be a poset matrix. Then for some 1 ≤ i, j ≤ m, interchanges
of i-th and j-th rows along with the interchanges of i-th and j-th columns in
Mm is called the (i,j)-relabeling of Mm. The following results are obtained by
Mohammad and Talukder [6] where the authors gave some interpretations of
the relabeling of poset matrices in posets.

Theorem 2.1. Any relabeling of a poset matrix is a poset matrix, and it repre-
sents the same poset up to isomorphism.

Theorem 2.2. Every poset matrix can be relabeled to an upper (or lower) tri-
angular matrix with 1s in the main diagonal by a finite number of relabeling.

From now on, by a poset matrix we mean a poset matrix in the upper
triangular form.

3. Composition of poset matrices

In this section, we give the construction of the composition of square matrices.
We show that the composition of poset matrices generalizes the ordinal prod-
uct of poset matrices. We also show that the composition of poset matrices
represents a decomposable poset.
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Definition 3.1. The composition of the square matrices Mm = [aij ], 1 ≤ i, j ≤
m and Nnr , 1 ≤ r ≤ m, denoted by Mm[Nn1 , Nn2 , ..., Nnm ], is a block matrix
defined as follows:

Mm[Nn1 , ..., Nnm ] =


a11Nn1 a12On1,n2 · · · a1mOn1,nm

a21On2,n1 a22Nn2 · · · a2mOn2,nm

...
...

. . .
...

am1Onm,n1 am1Onm,n2 · · · ammNnm

 .

Let Mm = [aij ], 1 ≤ i, j ≤ m and Nnr , 1 ≤ r ≤ m be poset matri-
ces. Since Mm is a (0,1)-matrix, the (i, j)-th block Qij of the block matrix
Mm[Nn1 , Nn2 , ..., Nnm ] = [Qij ], 1 ≤ i, j ≤ m can be expressed as follows:

(1) Qij =



Nni , if i = j,

Oni,nj , if i < j and aij = 1,

Zni,nj , if i < j and aij = 0,

Onj ,ni , if i > j and aij = 1,

Znj ,ni , if i > j and aij = 0.

Example 3.1.

 1 0 1
0 1 1
0 0 1


[ 1 1

0 1

]
,

 1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

 ,

 1 1 1
0 1 0
0 0 1




=



1 1 | 0 0 0 0 | 1 1 1
0 1 | 0 0 0 0 | 1 1 1
− − . − − − − . − − −
0 0 | 1 0 1 0 | 1 1 1
0 0 | 0 1 1 1 | 1 1 1
0 0 | 0 0 1 0 | 1 1 1
0 0 | 0 0 0 1 | 1 1 1
− − . − − − − . − − −
0 0 | 0 0 0 0 | 1 1 1
0 0 | 0 0 0 0 | 0 1 0
0 0 | 0 0 0 0 | 0 0 1


.

In the above example, we give the composition B[C2,M
′, B′] of the poset

matrices B, C2, M
′ (Example 2.1), and B′, where the matrices B and B′ rep-

resent the posets B2,1 and B1,2, respectively.

Mohammad and Talukder [7] introduced the notion of the ordinal product
of matrices. The ordinal product Mm ⊠ Nn of the poset matrices Mm = [aij ],
1 ≤ i, j ≤ m and Nn is a block matrix where the (i, j)-th block Pij of the matrix
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Mm ⊠Nn = [Pij ], 1 ≤ i, j ≤ m is expressed as follows:

(2) Pij =


Nn, if i = j,

On, if i ̸= j and aij = 1,

Zn, otherwise.

The authors [7] then gave an interpretation of the ordinal product of poset
matrices in posets as follows:

Theorem 3.1. Let Mm represent the poset A and Nn represent the poset B.
Then the matrix Mm ⊠Nn is a poset matrix and it represents the poset A⊗B.

Corollary 3.1. Let B be any poset. Then Cn ⊗B ∼= ⊕nB.

The result in Corollary 3.1 was proved by using the fact that the ordinal
product of poset matrices gives a generalization of the ordinal sum of poset
matrices. Below, we show that the composition of poset matrices generalizes
the ordinal product of poset matrices.

Lemma 3.1. Let Mm and Nn be poset matrices. Then

(3) Mm[Nn, Nn, ..., Nn︸ ︷︷ ︸
m times

] = Mm ⊠Nn.

Proof. Substitute ni = n, 1 ≤ i ≤ m in the expression for Qij in equation (1).
Then (i, j)-th block Qij of Mm[Nn1 , Nn2 , ..., Nnm ] = [Qij ], 1 ≤ i, j ≤ m takes
the following form.

Qij =



Nn, if i = j,

On,n, if i < j and aij = 1,

Zn,n, if i < j and aij = 0,

On,n, if i > j and aij = 1,

Zn,n, if i > j and aij = 0.

This implies

Qij =


Nn, if i = j,

On, if i ̸= j and aij = 1,

Zn, otherwise

which equals the expression for Pij in equation (2). Thus, for all 1 ≤ i, j ≤ m,
the (i, j)-th block of the poset matrix Mm[Nn, Nn, ..., Nn︸ ︷︷ ︸

m times

] equals the (i, j)-th

block of the poset matrixMm⊠Nn. Hence the equality in equation (3) holds.

The following result gives an interpretation of the composition of poset ma-
trices in posets.
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Theorem 3.2. Let Mm represent the poset A and Nni represent the poset Bi,
1 ≤ i ≤ m. Then the matrix Mm[Nn1 , Nn2 , ..., Nnm ] is a poset matrix and it
represents the poset A[B1,B2, ...,Bm].

Proof. Let Mm = [aij ], 1 ≤ i, j ≤ m, Nnr = [bij ], 1 ≤ i, j ≤ nr and 1 ≤ r ≤ m.
Also let Mm[Nn1 , Nn2 , ..., Nnm ] = QT = [qij ], 1 ≤ i, j ≤ T , where T =

∑m
r=1 nr,

with block representation [Qij ], 1 ≤ i, j ≤ m. Since Mm and Nnr , 1 ≤ r ≤ m are
all upper triangular matrices with 1s in the main diagonal, Qij = Zni,nj for all
i > j. Thus QT is upper triangular with elements 1s in the main diagonal and
hence QT is reflexive and antisymmetric. For transitivity of QT , let qij = qjk = 1
for some 1 ≤ i ≤ j ≤ k ≤ T . Then, we have the following cases:

1. qij , qjk ∈ Qrr = Nnr for some 1 ≤ r ≤ m. Then there exist bi′j′ , bj′k′ ,
bi′k′ ∈ Nnr such that bi′j′ = qij = 1, bj′k′ = qjk = 1 and bi′k′ = qik. Since
Nnr is transitive, qik = bi′k′ = 1.

2. qij ∈ Qrs = Onr,ns and qjk ∈ Qss = Nns for some 1 ≤ r < s ≤ m. Then
qik ∈ Qrs = Onr,ns and clearly, qik = 1.

3. qij ∈ Qrs = Onr,ns and qjk ∈ Qst = Ons,nt for some 1 ≤ r < s < t ≤ m.
Then qik ∈ Qrt. Then by the definition of composition of poset matrices,
ars, ast ∈ Mm; and ars = ast = 1. Since Mm is transitive, art = 1.
Therefore, Qrt = Onr,nt and clearly, qik = 1.

Thus, QT is transitive and hence a poset matrix.

Now, we show that QT represents the poset A[B1, B2, . . ., Bm]. Let A
= {x1, x2, ..., xm} and Br = {yt+i : 1 ≤ i ≤ nr} where t =

∑r−1
k=1 nk. Let

qij = 1 in QT for some 1 ≤ i ≤ j ≤ T . Then qij ∈ Qrs for some 1 ≤ r ≤ s ≤ m,
and we have the following two cases.

1. r = s. Then Qrs = Nnr and bi′j′ = qij ∈ Qkl = Nnr for t =
∑r−1

k=1 nk,

i
′
= i − t and j

′
= j − t. Since bi′j′ = 1 and Nnr represents Br, we have

yt+i′ ⩽Br yt+j′ . Then, by the definition of composition of posets, yi ⩽c yj .

2. r < s. Then Qrs = Onr,ns for
∑r−1

k=1 nk = t < l =
∑s−1

k=1 nk. Then
yt+i′ ∈ Br and yl+j′ ∈ Bs. Then by the definition of composition of poset
matrices, 1 = ars ∈ Mm. Sine Mm represents A, we have xr ⩽A xs. Then,
by the definition of composition of posets, yi ⩽c yj .

For the converse, similarly, we show that yi ⩽c yj implies 1 = qij ∈ QT for all
1 ≤ i, j ≤ T . Hence the matrix QT represents the poset A[B1, B2, . . ., Bm].

Below we prove the result that every composite poset is decomposable as an
immediate corollary of Theorem 3.2.

Corollary 3.2. Every composite poset is decomposable.



RECOGNITION OF DECOMPOSABLE POSETS BY USING THE POSET MATRIX 463

Proof. Let C be any composite poset. Then there exist the nonsingleton posets
A and B such that C ∼= A⊗B. Let |A| = m. To show that C is decomposable,
we now show that the following isomorphism holds

(4) A⊗B ∼= A[B,B, . . . ,B︸ ︷︷ ︸
m times

].

Let Mm represent the poset A and Nn represent the poset B. Then, by The-
orem 3.1, Mm ⊠ Nn is a poset matrix and it represents the poset A ⊗ B, and
by Theorem 3.2, Mm[Nn, Nn, ..., Nn︸ ︷︷ ︸

m times

] is a poset matrix and it represents the

poset A[B,B, . . . ,B︸ ︷︷ ︸
m times

]. Therefore, the isomorphism in equation (4) holds by the

equality in equation (3), as established in Lemma 3.1.

4. Recognition of decomposable posets

We now define the property of transitive blocks of 1s in a poset matrix.

Definition 4.1. A poset matrix Q is said to have the property of transitive
blocks of 1s of length {m, {n1, n2, . . . , nm}} if and only if there exists a block
representation Q = [Mij ], 1 ≤ i, j ≤ m such that for all 1 ≤ i, j, k ≤ m, the
following conditions hold:

1. Mii = Nni, a poset matrix,

2. Mij = Zni,nj or Oni,nj for i < j; and Mij = Znj ,ni for i > j,

3. Mij = Oni,nj and Mjk = Onj ,nk
implies Mik = Oni,nk

.

Note that if n1 = n2 = · · · = nm = n (say) then we write shortly {m,n} for
the length {m, {n1, n2, . . . , nm}}.

We see that although the poset matrix N in the following example seems
not to satisfy the property of the transitive blocks of 1s, the poset matrix N

′′

(Example 4.1), obtained by (3, 4)-relabeling of N and then (2, 3)-relabeling of
N

′
, satisfies the property of transitive blocks of 1s of length {3, {2, 4, 3}}.

Example 4.1.

N =



1 0 | 0 1 0 0 | 1 1 1
0 1 | 0 0 1 0 | 1 1 1
− − . − − − − . − − −
0 0 | 1 0 1 1 | 1 1 1
0 0 | 0 1 0 0 | 1 1 1
0 0 | 0 0 1 0 | 1 1 1
0 0 | 0 0 0 1 | 1 1 1
− − . − − − − . − − −
0 0 | 0 0 0 0 | 1 1 1
0 0 | 0 0 0 0 | 0 1 0
0 0 | 0 0 0 0 | 0 0 1


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(3,4)-relabeling−−−−−−−−−→



1 0 | 1 0 0 0 | 1 1 1
0 1 | 0 0 1 0 | 1 1 1
− − . − − − − . − − −
0 0 | 1 0 0 0 | 1 1 1
0 0 | 0 1 1 1 | 1 1 1
0 0 | 0 0 1 0 | 1 1 1
0 0 | 0 0 0 1 | 1 1 1
− − . − − − − . − − −
0 0 | 0 0 0 0 | 1 1 1
0 0 | 0 0 0 0 | 0 1 0
0 0 | 0 0 0 0 | 0 0 1


= N

′

(2,3)-relabeling−−−−−−−−−→



1 1 | 0 0 0 0 | 1 1 1
0 1 | 0 0 0 0 | 1 1 1
− − . − − − − . − − −
0 0 | 1 0 1 0 | 1 1 1
0 0 | 0 1 1 1 | 1 1 1
0 0 | 0 0 1 0 | 1 1 1
0 0 | 0 0 0 1 | 1 1 1
− − . − − − − . − − −
0 0 | 0 0 0 0 | 1 1 1
0 0 | 0 0 0 0 | 0 1 0
0 0 | 0 0 0 0 | 0 0 1


= N

′′
.

Theorem 4.1. A matrix satisfies the property of transitive blocks of 1s if and
only if it is obtained as the composition of some poset matrices.

Proof. Let the matrix Q be obtained as the composition of the poset matrices
Mm and Nni , 1 ≤ i ≤ m. Then, by the definition of the composition of poset
matrices, we have Q = Mm[Nn1 , Nn2 , ..., Nnm ], and by Theorem 3.2, Q is a block
poset matrix. This shows that Q is upper triangular having the poset matrices
Nni , 1 ≤ i ≤ m as diagonal blocks satisfying the first two cases in Definition 4.1.
Let Mm = [aij ] and Q = [Qij ], 1 ≤ i, j ≤ m with Qij = Oni,nj and Qjk = Onj ,nk

for some 1 ≤ i < j ≤ m. Then, again by the definition of the composition of
poset matrices, we have aij = ajk = 1. Since Mm is transitive, aik = 1. Thus,
Qik = Oni,nk

which satisfies the last case in Definition 4.1. This shows that Q
satisfies the property of transitive blocks of 1s of length {m, {n1, n2, . . . , nm}}.

Conversely, we suppose that the matrix Q satisfies the property of transitive
blocks of 1s of length {m, {n1, n2, . . . , nm}} and show similarly that Q can be
obtained as the composition of some poset matricesMm and Nni , 1 ≤ i ≤ m.

We observe that the poset matrix N
′′
, as given in Example 4.1, represents

the decomposable poset B2,1[ C2, Z4, B1,2] shown in Figure 2. In the following,
we establish this result in general where we give a matrix recognition of the
decomposable posets.
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Theorem 4.2. Let the matrix Q represent the poset D. Then D is decomposable
if and only if Q can be relabeled in such a form that it satisfies the property of
transitive blocks of 1s.

Proof. Let D be a decomposable poset. There exist the posets A and Bi,
1 ≤ i ≤ m, where m ≥ 2 and at least one Bi is nonsingleton, such that D
∼= A[B1,B2, . . . ,Bm]. Let Mm represent the poset A and Nni represent the
poset Bi for every 1 ≤ i ≤ m. Then, by Theorem 3.2, Mm[Nn1 , Nn2 , . . . , Nnm ]
is a poset matrix and it represents the poset A[B1,B2, . . . ,Bm] ∼= D. This
shows that Q can be relabeled in such a form that Q = Mm[Nn1 , Nn2 , . . . , Nnm ].
By Theorem 4.1, Q satisfies the property of transitive blocks of 1s of length
{m, {n1, n2, . . . , nm}}.

Conversely, we suppose that the poset matrix Q can be relabeled in such a
form that it satisfies the property of transitive blocks of 1s and show similarly
that the poset D is decomposable.
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